Quest articol chi l'è scrivuu in Koiné occidentala .
Sa la cjama integrala definida da la funziun f in l'intervall [a,b] la grandezza
[
F
(
x
)
]
a
b
=
∫
a
b
f
(
x
)
d
x
=
F
(
b
)
−
F
(
a
)
{\displaystyle \left[F(x)\right]_{a}^{b}=\int _{a}^{b}f(x)\,dx=F(b)-F(a)}
intúe
F
{\displaystyle F\,}
l'è una primitiva qual-sa-vöör da
f
{\displaystyle f\,}
e
a
{\displaystyle a\,}
,
b
{\displaystyle b\,}
a inn i cunfin da l'integrala.
I esiist di funziun che a inn integràbil, ma da che vargüna primitiva la pöö mía vess
esprimüda in tèrmin da funziun elementaar.
Da tüta manera, la valuur da vargüna da sti integrall a pöö vess calcülada e a l'è mustrada chí-da-sota:
∫
0
+
∞
x
e
−
x
d
x
=
1
2
π
{\displaystyle \int _{0}^{+\infty }{{\sqrt {x}}\,e^{-x}\,dx}={\frac {1}{2}}{\sqrt {\pi }}}
∫
0
+
∞
e
−
x
2
2
d
x
=
π
2
{\displaystyle \int _{0}^{+\infty }{e^{-{\frac {x^{2}}{2}}}\,dx}={\sqrt {\frac {\pi }{2}}}}
(integrala da Gauss )
∫
0
+
∞
e
−
x
2
d
x
=
1
2
π
{\displaystyle \int _{0}^{+\infty }{e^{-x^{2}}\,dx}={\frac {1}{2}}{\sqrt {\pi }}}
∫
0
+
∞
x
e
x
−
1
d
x
=
π
2
6
{\displaystyle \int _{0}^{+\infty }{{\frac {x}{e^{x}-1}}\,dx}={\frac {\pi ^{2}}{6}}}
∫
0
+
∞
x
3
e
x
−
1
d
x
=
π
4
15
{\displaystyle \int _{0}^{+\infty }{{\frac {x^{3}}{e^{x}-1}}\,dx}={\frac {\pi ^{4}}{15}}}
∫
0
+
∞
sin
(
x
)
x
d
x
=
π
2
{\displaystyle \int _{0}^{+\infty }{\frac {\sin(x)}{x}}\,dx={\frac {\pi }{2}}}
∫
0
+
∞
x
z
−
1
e
−
x
d
x
=
Γ
(
z
)
{\displaystyle \int _{0}^{+\infty }x^{z-1}\,e^{-x}\,dx=\Gamma (z)}
(
Γ
{\displaystyle \Gamma \,}
a l'è la funziun Gamma , definida pour z > 0 )
∫
0
1
1
1
−
t
3
d
t
=
1
3
B
(
1
3
,
1
2
)
{\displaystyle \int _{0}^{1}{\frac {1}{\sqrt {1-t^{3}}}}\,dt={\frac {1}{3}}\mathrm {B} \left({\frac {1}{3}},{\frac {1}{2}}\right)}
(integrala elítica )
∫
0
π
2
ln
(
cos
(
x
)
)
d
x
=
∫
0
π
2
ln
(
sin
(
x
)
)
d
x
=
−
π
2
ln
(
2
)
{\displaystyle \int _{0}^{\frac {\pi }{2}}\ln(\cos(x))\,dx=\int _{0}^{\frac {\pi }{2}}\ln(\sin(x))\,dx=-{\frac {\pi }{2}}\ln(2)}
∫
−
∞
+
∞
cos
(
x
2
)
d
x
=
∫
−
∞
+
∞
sin
(
x
2
)
d
x
=
π
2
{\displaystyle \int _{-\infty }^{+\infty }\cos(x^{2})\,dx=\int _{-\infty }^{+\infty }\sin(x^{2})\,dx={\sqrt {\frac {\pi }{2}}}}
(integrall da Fresnel )
∫
0
π
ln
(
1
−
2
α
cos
x
+
α
2
)
d
x
=
2
π
ln
|
α
|
{\displaystyle \int _{0}^{\pi }\ln(1-2\alpha \cos \,x+\alpha ^{2})\,dx=2\pi \ln |\alpha |}
si
|
α
|
>
1
{\displaystyle |\alpha |>1\,}
e
0
{\displaystyle 0\,}
si
|
α
|
≤
1
{\displaystyle |\alpha |\leq 1}
.
∫
0
+
∞
x
e
−
x
3
d
x
=
1
3
Γ
(
2
3
)
{\displaystyle \int _{0}^{+\infty }{xe^{-x^{3}}\,dx}={\frac {1}{3}}\Gamma \left({\frac {2}{3}}\right)}
∫
0
π
2
sin
n
(
x
)
d
x
=
I
n
{\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n}(x)\,dx=I_{n}}
(integrall da Wallis )