Custanta da Apéry

De Wikipedia
Jump to navigation Jump to search

La custanta d'Apéry sa la definiss cuma la valuur da la funziú zeta da Rieman par una valuur da la variàbil iguala a 3, ζ(3):

ζ(3) = 1,20205 69031 59594 28539 97381 61511 44999 ...

Ul nomm "custanta d'Apéry" al vegn dal fatt che ul matemàtich francées Rogé Apéry al demustrava, ul 1979, che ζ(3) al è irazziunaal. Una espressiú pal càlcül da ζ(3), gjamò cugnussüda par Euler, al è:



Al cuventa destacá che la custanta d'Apéry la pariss in vargü prubleem físich. Par esempi, la pariss da furma natürala int i tèrmin da seguunt e teerz úrden da la resú girumagnética dal eletrú (ul quozzieent intra ul sò mumeent dipulaar magnétich e ul sò mumeent angulaar).